
PHANS-C Documentation
Release 1.0

Jaclyn Saunders

Apr 20, 2020

Contents:

1 Overview of PHANS-C Pipeline 3

2 Citations for using PHANS-C 7

3 How to run PHANS-C 9
3.1 Amazon AWS AMI . 9
3.2 Docker Image . 9
3.3 Local Installation . 10

4 PHANS-C Tutorial 13
4.1 Get the tutorial folder . 13
4.2 The Tutorial . 13
4.3 1: Construct the Phylogenetic Reference Tree . 14
4.4 2: Parse and Format reads from Metagenome . 16
4.5 3: Align unknown reads to Reference Alignment . 20
4.6 4: Phylogenetic placement of unknown reads . 23
4.7 5: Final Summary . 35

5 License 37

i

ii

PHANS-C Documentation, Release 1.0

Welcome to the PHANS-C Pipeline: PHylogenetic Assignment of Next generation Sequences - in the Cloud.

PHANS-C performs inference-based placement analysis of targeted protein coding genes in amino acid space in very
large metagenomic datasets, with a focus on differentiating between closely related organisms. PHANS-C can also
be used in nucleotide space, with metatranscriptomic sequencing data, and for analysis of broad taxonomic place-
ment. The PHANS-C pipeline tools presented here are implemented in Python 3.6 on Linux based OS and work in
conjunction with previously published open source software.

The complete pipeline can be found on Amazon Web Services (AWS) us-west-2 Amazon Machine Image (AMI)
PHANS-C v 1.0.2 ami-09bbe25d9d7608ea5. This AMI has all of the PHANS-C scripts installed, along with all
additional software cited and dependencies.

Original PHANS-C Pipeline code can be found at Bitbucket.

Contents: 1

https://bitbucket.org/jaclynk/phans-c_pipeline

PHANS-C Documentation, Release 1.0

2 Contents:

3

PHANS-C Documentation, Release 1.0

CHAPTER 1

Overview of PHANS-C Pipeline

4 Chapter 1. Overview of PHANS-C Pipeline

PHANS-C Documentation, Release 1.0

A flowchart of the bioinformatics pipeline. Objects represent files, while connecting arrows are actions on objects
either through software or manual curation. Gray text between arrowed lines represents previously existing software
while bold italicized black text represents interconnecting scripts described here in the PHANS-C pipeline. The
PHANS-C pipeline is broken up into four major parts: 1. Full length reference sequences for the gene of interest
are aligned and a reference tree is created; 2. Short reads are parsed from a large metagenomic database using local-
alignment or mapping based tools. Then the recruited reads are cleaned and formatted for phylogenetic inference; 3.
The unknown reads are aligned to the reference alignment; 4. Unknown aligned reads are phylogenetically placed to
their least common ancestor on the reference gene tree, reads are labeled accordingly and tabulated.

Below is a table of the various programs in the PHANS-C Pipeline along with brief descriptions of the function of the
program in the pipeline as well as associated citation indicating whether the program is new and specific to this work
[2] or previously available academic software.

Citation numbers correspond to citations listed below.

5

PHANS-C Documentation, Release 1.0

6 Chapter 1. Overview of PHANS-C Pipeline

CHAPTER 2

Citations for using PHANS-C

Please cite the following papers if using this pipeline:

[1] MUSCLE: Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research, 32(5), 1792-1797. doi: 10.1093/nar/gkh340

[2] PHANS-C Pipeline: Saunders, J. K., McKay, C., Rocap, G. (submitted). PHANS-C Pipeline: PHylogenetic
Assignment of Next generation Sequences - in the Cloud.

[3] RAxML: Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
phylogenies. Bioinformatics, 30(9), 1312-1313.

[4] BLAST: Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997).
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17),
3389-3402.

[5] PaPaRa: Berger, S. A., & Stamatakis, A. (2012). PaPaRa 2.0: a vectorized algorithm for probabilistic
phylogeny-aware alignment extension. Heidelberg Institute for Theoretical Studies, https://sco.h-its.org/exelixis/pubs/
Exelixis-RRDR-2012-5.pdf.

[6] RAxML Evolutionary Placement Algorithm EPA: Berger, S. A., Krompass, D. & Stamatakis, A. (2011). Perfor-
mance, Accuracy, and Web Server for Evolutionary Placement of Short Sequence Reads under Maximum Likelihood.
Systematic Biology (60) 291-302. doi:10.1093/sysbio/syr010

[7] Biopython: Cock, P. J. A., Antao, T., Chang, J. T., Chapman, B. A., Cox, C. J., Dalke, A., . . . de Hoon, M. J. L.
(2009). Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinfor-
matics, 25(11), 1422-1423. doi: 10.1093/bioinformatics/btp163

7

https://academic.oup.com/nar/article/32/5/1792/2380623/
https://bitbucket.org/jaclynk/phans-c_pipeline
https://academic.oup.com/bioinformatics/article/30/9/1312/238053/
https://academic.oup.com/nar/article/25/17/3389/1061651/
https://sco.h-its.org/exelixis/pubs/Exelixis-RRDR-2012-5.pdf
https://sco.h-its.org/exelixis/pubs/Exelixis-RRDR-2012-5.pdf
https://sco.h-its.org/exelixis/pubs/Exelixis-RRDR-2012-5.pdf
https://academic.oup.com/sysbio/article/60/3/291/1667010/
https://academic.oup.com/bioinformatics/article/25/11/1422/330687

PHANS-C Documentation, Release 1.0

8 Chapter 2. Citations for using PHANS-C

CHAPTER 3

How to run PHANS-C

We offer 3 ways you can get and run PHANS-C.

1. Amazon AWS AMI

2. Docker Image

3. Local Installation

3.1 Amazon AWS AMI

3.1.1 Start the instance from an AMI

Spin up an EC2 instance using the Amazon AMI PHANS-C v 1.0.2 ami-09bbe25d9d7608ea5 hosted in us-west-2.
Recommend using the c4.4xlarge instance type

Will need to ssh into instance using user id “ubuntu” (as opposed to ec2-user, etc.).:

$ ssh -i "your-ec2-key.pem" ubuntu@##.###.###.##

Activate the appropriate conda environment as follows:

$ conda activate phansc

• AWS users will find the tutorial folder located in the ubuntu user’s home directory.

3.2 Docker Image

3.2.1 Start the Docker container from the image:

On a machine with Docker already installed:

9

PHANS-C Documentation, Release 1.0

First download and expand the PHANS-C_Tutorial Folder, then do this:

$ docker run -v /Local/path/to/work/folder:/Tutorial -it rocaplab/phansc

The '-v' option allows you to designate a directory that is shared between the host machine, and the docker image.

The '-it' option opens the Docker image with an interactive shell.

Initiating Docker this way calls upon the latest Docker Image available for PHANS-C in Docker Hub at rocaplab/
phansc.

Any changes inside the container’s /Tutorial directory will instanty be reflected in the host’s /Local/path/
to/work/folder directory as well. In this way, a directory can be shared between the host and the container.

• A note on running from a Windows OS: it is recommended to specify the path in quotes, for example, -v
"C:\Local\path\to\work\folder":/Tutorial.

This will drop you into a command prompt inside a centos based container (similar to a virtual machine). You can
then navigate to the tutorial folder:

cd /Tutorial

3.3 Local Installation

The PHANS-C Pipeline scripts can be found in our Bitbucket repository and have been written and implemented using
Python. However, the Pipeline depends on multiple other open source software written in multiple languages with their
own dependencies and requirements. the PHANS-C scripts themselves should be installed somehere in your PATH,
and made executable, so that they can be called from anywhere. The following are some very brief tips that may help
you install dependencies locally.

3.3.1 Build with all dependencies using .yml file

You can build a conda environment using the provided .yml file.

conda env create -f phans-c_environment.yml

Alternatively, you can add packages individually as described below.

3.3.2 Biopython

Biopython can be found through the Biopython website. The PHANS-C Pipeline was developed with version 1.68

There are many ways to install Biopython, including MacPorts, Homebrew, Pip, and Bioconda. We installed ours with
Bioconda.

conda install python
conda install biopython

3.3.3 Muscle

The PHANS-C Pipeline was created using Muscle version 3.8.31. The latest version of Muscle as well as older
versions can be found at the Muscle website. We installed ours with Bioconda.

10 Chapter 3. How to run PHANS-C

http://rocaplab.ocean.washington.edu/files/PHANS-C_Tutorial.zip
https://bitbucket.org/jaclynk/phans-c_pipeline
https://bitbucket.org/jaclynk/phans-c_pipeline/src/master/phans-c_environment.yml
https://biopython.org/
https://bioconda.github.io/
https://www.drive5.com/muscle/downloads.htm

PHANS-C Documentation, Release 1.0

conda install muscle

3.3.4 RAxML

RAxML and the RAxML Evolutionary Placement Algorithm are located in the same executable. The PHANS-C
Pipeline was created using RAxML version 8.2.8 and has been tested successfully with RAxML version 8.2.11. A
typical install of RAxML may install several different binaries. Which is best may depend on your architecture. Try
raxmlHPC-PTHREADS-AVX first, as this is the fastest and multi-core capable. If that doesn’t work, experiment with
some of the other options. The most recent version of RAxML can be found from from the Exelixis Lab GitHub
repository or from the Exelixis Lab homepage. We installed ours with Bioconda.

conda install raxml

3.3.5 proteinModelSelection.pl

A perl script, proteinModelSelection.pl, for identifying the best AA substitution model for tree generation was created
by the RAxML author Alexis Stamatakis and can be found at the RAxML site. You may have to replace the shebang
(“#!”) line at the top of the script to point to your perl location. You may also have the change the raxml executable
name to match the one on your system. Remember to make it executable after you put it into your PATH.

3.3.6 BLAST

We installed BLAST with Bioconda.

conda install blast

3.3.7 PaPaRa

PaPaRa 2 can be found through the Exelixis Lab homepage or through Simon Berger’s GitHub repository. The
PHANS-C Pipeline uses PaPaRa version 2.5.

We had a lot of trouble getting PaPaRa working on MacOS High Sierra (10.13). The precompiled version of PaPaRa
offered by the Exelixis Lab did not work for us. Compiling manually did not work at first because of boost compati-
bility problems. Manually installing boost, as well as installing with homebrew and macports failed. We were finally
able to get PaPaRa to compile by installing a particular version of boost with conda. This was how we were successful,
your mileage may vary.

#Assumes you have Bioconda and an environment setup and activated
conda install boost=1.64
cd /path/to/papara/source/directory
ln -s /path/to/your/conda/installation/your_env/include/boost/ ./boost
sh build_papara2.sh
cp ./papara /path/to/your/bin/dir

The PaPaRa precompiled binary worked our our Ubuntu Linux 18.04 system, but bear in mind it is not compiled for
multiple threads. For that, you must compile your own.

3.3. Local Installation 11

https://github.com/stamatak/standard-RAxML
https://github.com/stamatak/standard-RAxML
http://www.exelixis-lab.org/
https://sco.h-its.org/exelixis/resource/download/software/ProteinModelSelection.pl
http://www.exelixis-lab.org/
https://github.com/sim82/papara_nt

PHANS-C Documentation, Release 1.0

3.3.8 Bokeh

Bokeh can be found on the Bokeh website. We installed ours with Bioconda.

conda install bokeh

3.3.9 Pandas

Pandas can be found on the Pandas website. We installed ours with Bioconda.

conda install pandas

3.3.10 Access the tutorial files:

The Tutorial folder is included in the repository.

12 Chapter 3. How to run PHANS-C

https://bokeh.pydata.org/en/latest/index.html
https://pandas.pydata.org/

CHAPTER 4

PHANS-C Tutorial

For those who want to hit the ground running. . .

You can either use a pre-made Amazon AWS AMI, Docker image, or install PHANS-C locally.

For tips getting PHANS-C running, and getting the tutorial folder, check out Get PHANS-C.

4.1 Get the tutorial folder

• AWS users will find the folder in /home/ubuntu/Tutorial

• Docker users will need to download the Tutorial folder, then mount it as a shared folder (see Get PHANS-C)

• Local users will find the tutorial folder in the main PHANS-C repository download.

4.2 The Tutorial

The order of the tutorial steps roughly follow the flow diagram of the pipeline found here. Open the Tutorial directory.
From here on out, paths are relative to the Tutorial directory.:

If you prefer, there is a shell script which automates the following process. However, we recommend that you manually
run through the steps to gain a greater understanding. If you prefer to use the shell script for the tutorial data, it can be
run as follows:

$ sh run_tutorial.sh

Warning: If you installed PHANS-C and prerequisites manually, rather than using the AWS image, it is very common
to have to slightly modify some scripts to get the workflow running. For example, the raxml binary can be called
different things (e.g. raxml, raxmlHPC, raxmlHPC-AVX, raxml-AVX2, raxml_8.2.11, etc) depending on
how it was installed. You may need to open the run_tutorial.sh and ProteinModelSelection.pl scripts and
adjust the name of the raxml binary. Be on the lookout for other similar errors. Another example is the third party
ProteinModelSelection.pl script may need to have the perl path modified on the first line of the script.

13

Get_PHANS-C.html
Get_PHANS-C.html
Overview.html

PHANS-C Documentation, Release 1.0

4.3 1: Construct the Phylogenetic Reference Tree

First, you will need to assemble a list of full length gene sequences which will act as known reference sequence
which will be used to compare the unknown metagenomic sequences. For this tutorial, we will identify and categorize
sequences of the ribosomal protein rpsD. Full length rpsD reference sequences in amino acid space can be found in
the file AA/rpsD_AA.fasta.

4.3.1 1.1: Make reference sequence alignment

Move into the AA directory:

$ cd AA/

Generate an alignment for the reference rpsD sequences using the program muscle.

$ muscle -in rpsD_AA.fasta -out rpsD_AA_aln.fasta

4.3.2 1.2: Convert alignment to phymlAln format

Convert from fasta to phymlAln format for tree construction.

$ phan-fastaToPhyml.py -f rpsD_AA_aln.fasta

phan-fastaToPhyml.py command line options:

-h, --help Show this help message and exit.

-f FILE Specify the FASTA in-file that contains the sequence alignment.

4.3.3 1.3: Find best amino acid substitution model for reference tree

Since we are using amino acid space, you may want to test for the best amino acid substitution model. However, you
may use any model available in RAxML. An excellent perl script, proteinModelSelection.pl, for identifying the best
AA substitution model for tree generation was created by the RAxML author Alexis Stamatakis and can be found at
the RAxML site.

The proteinModelSelect.pl script generates a lot of output files,so, to manage these create a new directory:

$ mkdir ProteinModel

Will need to move a copy of the alignment file into this directory in order to run proteinModelSelection.pl.:

$ cp rpsD_AA_aln.phymlAln ./ProteinModel/

Now, move into the ProteinModel directory.

$ cd ProteinModel

Run proteinModelSelection.pl and redirect the standard output, which is a printout of the best substitution model, to
the file BestModel.txt.

$ proteinModelSelection.pl rpsD_AA_aln.phymlAln > BestModel.txt

When proteinModelSelection.pl is finished running, check for the best identified substitution model.

14 Chapter 4. PHANS-C Tutorial

http://www.drive5.com/muscle/
https://sco.h-its.org/exelixis/resource/download/software/ProteinModelSelection.pl

PHANS-C Documentation, Release 1.0

$ cat BestModel.txt

Which should print out Best Model: LG

Also, check to see if a file rpsD_AA_aln.phymlAln.reduced has been generated. If there are duplicate se-
quences, this .reduced file is generated, and it is best to construct a tree on this alignment file. You can find what
sequences were duplicates and which were removed from the alignment by checking the RAxML_info files.

$ more RAxML_info.LG_rpsD_AA_aln.phymlAln_EVAL

Move a copy of the .reduced file back to the AA directory, which should be one level above the current directory.

$ cp rpsD_AA_aln.phymlAln.reduced ../

Now, move back to the AA directory.

$ cd ../

4.3.4 1.4: Construct an amino acid reference phylogenetic tree

Build a tree using the generated alignment files and the best amino acid subtiution model identified. You can find more
information about constructing trees with RAxML at the RAxML software page.

The PHANS-C Pipeline data analysis was developed using RAxML version 8.2.8. On your system, the RAxML
exectuable may be named differently. For example, on our local system, ours is called raxmlHPC-PTHREADS-AVX.
On the AWS AMI, version 8.2.8 can be accessed via the AMI executable raxml; however, a newer version of RAxML,
version 8.2.11, is also available on the AMI and has been tested for compatibility with the PHANS-C Pipeline. RAxML
version 8.2.11 can be accessed through the AMI executable raxml_8.2.11 or via raxml.

$ raxml -m PROTCATLG -s rpsD_AA_aln.phymlAln.reduced -# 1 -T 8 -p 610 -n rpsD_AA

Some of the options used to construct this tree are as follows:

-m STR Designates the model used to build the tree. Here, we are constructing an amino
acid tree PROT using a gamma model of rate heterogeneity GAMMA using the
best amino acid substitution model printed by proteinModelSelection.pl which is
LG. . . PROTGAMMALG

-s FILE Specify the input alignment file.

-T INT Specify the number of threads. Do not use more than your computer has available.

-p INT Specify a random seed for starting parsimony inferences.

-n STR Specify a title for the output file names.

-# INT Specify the number of distinct starting trees.

For expediency in running this tutorial, we are using the CAT model and only using 1 starting tree.However, we
would strongly encourage more stringent settings for real data, and recommend using the GAMMA model of rate
heterogeneity -m PROTGAMMALG and at least 10 starting trees -# 10.

See the RAxML documentation for further explanation of options.

4.3. 1: Construct the Phylogenetic Reference Tree 15

https://sco.h-its.org/exelixis/web/software/raxml/index.html
https://sco.h-its.org/exelixis/web/software/raxml/index.html

PHANS-C Documentation, Release 1.0

4.4 2: Parse and Format reads from Metagenome

4.4.1 2.1: Construct a BLAST database from the metagenomic sequence reads

You will need BLAST+ in order to build a blast database. You can find information on obtaining BLAST Get PHANS-
C. The BLAST database will need to be hash indexed in order to pull metagenomic reads from the database for
placement.

First, move into the blast directory:

$ cd ../blastDB/artificialMG/

An artificial metagenome, artificialMG.fasta, is located in this directory. Now, use this file to generate a blast
database.

$ makeblastdb -parse_seqids -hash_index -dbtype nucl -in artificialMG.fasta -out
→˓artificialMG

In order to access this blast database from any directory, we will need to add it to the blast path. If you have it installed
locally, use your own custom location. If you are using the AWS image, to add this directory to the blast path for this
session of the shell, enter the following in the command line:

$ export BLASTDB=$HOME/Tutorial/blastDB/artificialMG

In order to add this directory to the blast path for every session, update the shell .profile with the following:

$ echo 'export BLASTDB=$HOME/Tutorial/blastDB/artificialMG/' >> ~/.profile

4.4.2 2.2: Search the BLAST database for potential reads of interest

Use BLAST search to pull out reads from the metagenome which show similarity to your target gene of interest. In
this case, parse out reads that show similarity to a set of rpsD sequences we are interested in. We will use a set of full
length amino acid sequences as queries from the file ~/Tutorial/AA/rpsD_AA_seeds_for_blast.fasta.
NOTE: It is important to use full length gene sequences, as the trimming script used later will trim the metagenomic
reads to be within the length or your starting query sequences.

Move to the directory AA

$ cd ../../AA/

Now use this amino acid sequence seed file to search a 6-frame translation of the metagenomic reads.

$ tblastn -db_gencode 11 -db ../blastDB/artificialMG/artificialMG -outfmt 5 -num_
→˓threads 2 -max_target_seqs 1000000 -evalue 1 -query rpsD_AA_seeds_for_blast.fasta -
→˓out rpsD_artificialMG.tblastn.xml

4.4.3 2.3: Parse reads from the BLAST results

Take the outfile from this BLAST search, rpsD_artificialMG.tblastn.xml, and parse out the desired infor-
mation:

$ phan-parseBlastXML.py -f rpsD_artificialMG.tblastn.xml -n 0 -e ../blastDB/
→˓artificialMG/artificialMG -s -l -o rpsD_artificialMG_blastResults -c 2

16 Chapter 4. PHANS-C Tutorial

Get_PHANS-C.html
Get_PHANS-C.html

PHANS-C Documentation, Release 1.0

phan-parseBlastXML.py command line options:

-h, --help Show this help message and exit.

-f FILE Specify the blast XML format FILE that you wish to use as input.

-o FILE Specify the outfile that you wish to use. If nothing is specified, the name and
location of the infile will be used, with a “best” as the suffix.

-n INT Specify the number of hits you want from each blast record. A 0 means return all
results. Default is 1.

-s, --sort Sort by evalue.

-e BLASTDB Specify db to extract hit read sequences from.

-c INT Specify number of cpu cores to use. Default=2.

phan-parseBlastXML.py output files:

rpsD_artificialMG_blastResults.hits - A file of all the blast hits: contains the blast infor-
mation as well as the sequence of the reads. Blast results partitioned by query sequence. This file to be
passed as input to next pipeline step

Each hit has a fasta title in the following tab delimited format:
Query Hit Accession Description Score Evalue Hit Number
→˓ Query Length Hit ID Hit Length Align Length
→˓Identities Positives Gaps Query From
→˓Query To Hit From Hit To Frame Query Frame
→˓Hit

#####
#Hits below from query Acaryochloris_marina_MBIC11017_66
#####

>SMPLB_Deinococcus_geothermalis_DSM_11300_NCBI_taxonomyId_319795_37835_2
→˓ SMPLB_Deinococcus_geothermalis_DSM_11300_NCBI_taxonomyId_319795_
→˓37835_2 No definition line 130.0 3.53312e-10 1 202
→˓SMPLB_Deinococcus_geothermalis_DSM_11300_NCBI_taxonomyId_319795_37835_2
→˓142 42 25 30 0 89 130 1 126 0
→˓ -2
TCGGTAGCTGGGAATATCCACGCGCTTGCCGTTGACCAGGATGTGACCGTGACCCACAAACTGCCGGGCCTGACGGCGGGTCGAGGCAAACCCCATGCGGAACACGACATTGTCGAGGCGGCGCTCCAGCAGCTGCAGGAAC
>SMPLA_Deinococcus_geothermalis_DSM_11300_NCBI_taxonomyId_319795_37835_2
→˓ SMPLA_Deinococcus_geothermalis_DSM_11300_NCBI_taxonomyId_319795_
→˓37835_2 No definition line 130.0 3.53312e-10 2 202
→˓SMPLA_Deinococcus_geothermalis_DSM_11300_NCBI_taxonomyId_319795_37835_2
→˓142 42 25 30 0 89 130 1 126 0
→˓ -2
...

rpsD_artificialMG_blastResults - A tab delimited file of all the unique blast hits with asso-
ciated blast result information.:

Query Hit Accession Description Score Evalue Hit Number
→˓ Query Length Hit ID Hit L
ength Align Length Identities Positives Gaps
→˓ Query From Query To Hit F
rom Hit To Frame Query Frame Hit
Acaryochloris_marina_MBIC11017_66 SMPLB_Deinococcus_
→˓geothermalis_DSM_11300_NCBI_taxonomyId_3197 (continues on next page)

4.4. 2: Parse and Format reads from Metagenome 17

PHANS-C Documentation, Release 1.0

(continued from previous page)

95_37835_2 SMPLB_Deinococcus_geothermalis_DSM_11300_NCBI_
→˓taxonomyId_319795_37835_2 No definition
line 130.0 3.53312e-10 1 202
→˓SMPLB_Deinococcus_geothermalis_DSM_11300_NCBI_taxonom
yId_319795_37835_2 142 42 25
→˓ 30 0 89 130 1
→˓ 126 0 -2
Acaryochloris_marina_MBIC11017_66 SMPLA_Deinococcus_
→˓geothermalis_DSM_11300_NCBI_taxonomyId_3197
95_37835_2 SMPLA_Deinococcus_geothermalis_DSM_11300_NCBI_
→˓taxonomyId_319795_37835_2 No definition
line 130.0 3.53312e-10 2 202
→˓SMPLA_Deinococcus_geothermalis_DSM_11300_NCBI_taxonom
yId_319795_37835_2 142 42 25
→˓ 30 0 89 130 1
→˓ 126 0 -2
...

rpsD_artificialMG_blastResults.hits_all.fasta - A file that just contains all of the
read sequences for the blast hits.:

>lcl|SMPLB_Deinococcus_geothermalis_DSM_11300_NCBI_taxonomyId_319795_37835_2
TCGGTAGCTGGGAATATCCACGCGCTTGCCGTTGACCAGGATGTGACCGTGACCCACAAACTGCCGGGCCTGACGGCGGG
TCGAGGCAAACCCCATGCGGAACACGACATTGTCGAGGCGGCGCTCCAGCAGCTGCAGGAAC
>lcl|SMPLB_Candidatus_Pelagibacter_ubique_HTCC1062_NCBI_taxonomyId_335992_
→˓58376_2
TTTTTACCGTTAACTCTTACGTGACCATGGTTAATAAGTTGTCTCGCTGAAAATACTGTTGTTGAAAATCTTGCTCTATA
AACAACAGAATCTAATCTTCTTTCAAGCAAACCAATTAAATTTTCACCCGTATCCCCTTTTAACAT
...

4.4.4 2.4: Trim the metagenomic reads:

Pass the .hits output file from the previous step to phan-trimFormatReads.py in order to format and clean
the reads for placement.:

$ phan-trimFormatReads.py -g rpsD -f rpsD_artificialMG_blastResults.hits -m 100 -e 1e-
→˓5

phan-trimFormatReads.py command line options:

--version Show program’s version number and exit.

-h, --help Show this help message and exit.

-g STR Specify the gene name which will be used to label output files.

-f FILE Specify the input file that is parsed from blast output. . . *.hits file.

-m INT Specify the minimum length of reads that will be passed on to rest of analysis, if
no min specified all reads will be passed.

-e STR (OPTIONAL) Evalue cutoff all reads must be =< this evalue to continue, if no
max specified all reads will be considered. Enter in scientific notation (1e-5).

-s INT (OPTIONAL) All reads must be >= this score to continue, if no min specified all
reads will be considered.

Functions of phan-trimFormatReads.py:

18 Chapter 4. PHANS-C Tutorial

PHANS-C Documentation, Release 1.0

• Trims the reads so that they are in the proper reading frame which corresponds with the BLAST hit.

• Trims the reads to remove any overhang that might exist - ie. if the read captures the beginning of a gene, but
also sequence upstream, the upstream sequence will be removed to improve alignment quality.

• Sets an e-value or score threshold for reads - must meet certain similarity scores in order to continue for place-
ment analysis.

• Sets a length requirement - reads, after trimming, must be of a specific length (designated in nucleotide bases)
in order to continue for placement analysis.

• Removes any reads with ambiguous nucleotide bases - creates a file with all the reads which ambiguous nu-
cleotides.

• Removes stop codons in the amino acid translation (the stop codons do not work with downstream placement
software). List of reads with stop codons produced.

phan-trimFormatReads.py output files:

rpsD_formatted_query_seqs_NT.fasta - A fasta file of the trimmed read sequences. Trimmed
according to the blast hit information.:

>SMPLA_Candidatus_Pelagibacter_ubique_HTCC1062_NCBI_taxonomyId_335992_58376_1
AAAGTTAACATTGGAAGTTACGTTGTTAAAGAAGAAGATATAATTGAAATTAGAGATAAATCTAAACAGTTGGCTATAATTGATATCGCTCTAGCTAGTAA
AGAAAGAGAAACACCTGAATACATTAATTTAGATGAAAAAAAT
>SMPLA_Candidatus_Pelagibacter_ubique_HTCC1062_NCBI_taxonomyId_335992_58376_2
ATGTTAAAAGGGGATACGGGTGAAAATTTAATTGGTTTGCTTGAAAGAAGATTAGATTCTGTTGTTTATAGAGCAAGATTTTCAACAACAGTATTTTCAGC
GAGACAACTTATTAACCATGGTCACGTAAGAGTTAACGGTAAA
>SMPLB_Candidatus_Pelagibacter_ubique_HTCC1062_NCBI_taxonomyId_335992_79864_1
AAACATAAAATAGATAGAAGGTTAAAAATTAACCTATGGGGTAGACCTAAAAGTCCTTTTAATAAAAGGGATTATGGTCCAGGACAACACGGACAAGGTAG
AAAAGGAAAACCTTCTGATTACGGAATTCAGCTACAAGCTAAACAAAAATTAAAA
...

rpsD_AA_translation_stops_removed.fasta - A fasta file of the amino acid transla-
tion of the trimmed sequence reads according to the blast hit information. Any stop codons
(*) have been removed as stop codons interfere with downstream programs. A file called
rpsD_AA_translations_with_Stops.fasta is also produced which contains any reads with
stop codons.:

>SMPLA_Candidatus_Pelagibacter_ubique_HTCC1062_NCBI_taxonomyId_335992_58376_1
KVNIGSYVVKEEDIIEIRDKSKQLAIIDIALASKERETPEYINLDEKN
>SMPLA_Candidatus_Pelagibacter_ubique_HTCC1062_NCBI_taxonomyId_335992_58376_2
MLKGDTGENLIGLLERRLDSVVYRARFSTTVFSARQLINHGHVRVNGK
>SMPLB_Candidatus_Pelagibacter_ubique_HTCC1062_NCBI_taxonomyId_335992_79864_1
KHKIDRRLKINLWGRPKSPFNKRDYGPGQHGQGRKGKPSDYGIQLQAKQKLK
...

rpsD_info_DICTIONARY_FILE_for_back_translate.csv - A data file in .csv format which
contains key sequence information.:

Accession, e-value, abs_frame, raw_read, fixed_read, AA_with_stop, AA_
→˓removed_stop
>SMPLA_Candidatus_Pelagibacter_ubique_HTCC1062_NCBI_taxonomyId_335992_58376_
→˓1, 1.15292e-24, 3,
→˓ATTTTTTTCATCTAAATTAATGTATTCAGGTGTTTCTCTTTCTTTACTAGCTAGAGCGATATCAATTATAGCCAACTGTTTAGATTTATCTCTAATTTCAATTATATCTTCTTCTTTAACAACGTAACTTCCAATGTTAACTTTTT,
→˓

→˓AAAGTTAACATTGGAAGTTACGTTGTTAAAGAAGAAGATATAATTGAAATTAGAGATAAATCTAAACAGTTGGCTATAATTGATATCGCTCTAGCTAGTAAAGAAAGAGAAACACCTGAATACATTAATTTAGATGAAAAAAAT,
→˓ 233.0, KVNIGSYVVKEEDIIEIRDKSKQLAIIDIALASKERETPEYINLDEKN,
→˓KVNIGSYVVKEEDIIEIRDKSKQLAIIDIALASKERETPEYINLDEKN
...

4.4. 2: Parse and Format reads from Metagenome 19

PHANS-C Documentation, Release 1.0

rpsD_unique_reads_with_ambiguous_nucleotides.fasta - If there are reads which have
ambiguous nucleotides (e.g. base = ‘N’), then those reads are removed and listed here.

rpsD_query_reads_processing_info.log - A helpful basic stats file that should be reviewed
before proceeding to next step of the pipeline. If there are significant reads which are removed due to
ambiguous nucleotides or a high abundance of reads with stop codons, then the user should proceed with
caution.:

The original number of blast reads prior to deduplication = 3110

The original number of unique reads recruited by blast = 106

e-value cutoff of 1e-05 used; all reads reported are <= this e-value
→˓threshold.
Number of reads which did not make this e-value threshold and were
→˓discarded: 23

The number of unique reads recruited from blast that also met thresholds
→˓specified = 83

The number of unique reads containing ambiguous nucleotides = 0
The percent of unique reads with ambiguous nucleotides that were removed
→˓from analysis = 0.00%

The number of unique reads that were less than 100 bases & removed from
→˓analysis = 7
The percent of reads that were too short & removed from analysis = 8.43%

The number of clean unique reads without ambiguous nucleotides = 76

The number of reads with at least one stop codon = 0
Percent of unique reads with stop codons = 0.00%

4.5 3: Align unknown reads to Reference Alignment

4.5.1 3.1: Use the program PaPaRa to align reads

Combine the formatted unknown reads with the reference phylogeny for identification. Take the alignmment that
was used to construct the phylogentic reference tree and align all the unknown clean reads (amino acid space) to the
reference alignment using the software package PaPaRa.

$ papara -t RAxML_bestTree.rpsD_AA -s rpsD_AA_aln.phymlAln.reduced -q rpsD_AA_
→˓translation_stops_removed.fasta -n rpsD_AA_artificialMG -j 1 -a -f

PaPaRa command line options used:

-t FILE Specify the reference phylogenetic tree.

-s FILE Specify the alignment used to build the reference tree.

-q FILE Specify the file with the formatted environmental sequence reads.

-n STR Specify label for output files.

-j INT Specify number of threads (do not specify more threads than available on your
machine).

-a Using amino acid sequences.

20 Chapter 4. PHANS-C Tutorial

https://sco.h-its.org/exelixis/pubs/Exelixis-RRDR-2012-5.pdf

PHANS-C Documentation, Release 1.0

PaPaRa output files:

papara_alignment.rpsD_AA_artificialMG - The alignment file in phymlAln format which contains the
recruited reads aligned to the reference alignment.

140 228
Bifidobacterium_angulatum_DSM_20098_21
→˓ --MTNVQRSRRQVRLSRALGIAL----------TPKAQRIFEKRPYAPGEHG--
→˓RTRRRTESDYAVRLREKQRLRAQY-
→˓GLSEKQLRAVYEKGTKTSGQTGNAMLQDLEVRLDNLVLRAGFARTTAQARQFVVHRHILVDGNIVNRPSYRVKPGQTIQVKAKSQTMEPFQAAAEGVHRDVLPPVPGYLDVNLASLKATLTRKPEAEE-
→˓-V-PAQVNIQYVVEFYAR--
Pirellula_sp_1_61
→˓ MKVTMARYTGPKARINRRLGTMLYET-----
→˓AGAARA---MDRRPQPPGMHT----RGRRPSNYGAALMEKQKIKHYY-
→˓GLGERQLRRYFENVGRKSGNTGELLLLMCERRLDNVVRRVGFTKTRPQARQGITHGHFRVNGVKVTKPGYMLRAGDLIEVRGRENLKNLYRGVIANSPPDGLD-
→˓---WVSFDSETLRATVLSLPGAVD--I-SLPVDANSVVEFLSR--
Planctomyces_brasiliensis_DSM_5305_53
→˓ ----MGRYTGPKARINRRLGSPVFES-----AGALRA---SEKRDSPPGMH---
→˓QRRK-KPTIYGAALTEKQKIKYYY-
→˓GFRERQLRKYFNEARRLKGNTGQNLLVLCERRLDNVVRRAGFAQTRPQARQAIVHSHFQLNGRTVNKPSIQVRAGDVITVRNRPNLHAIYKEQVGRADTAACE-
→˓---FVSVDDSALKIVVSAIPTFAD--V-SLPVDVNQVVAFLSR--
...
SMPLB_Candidatus_Pelagibacter_ubique_HTCC1062_NCBI_taxonomyId_335992_32557_2 --------
→˓--
→˓---KEEDIIEIRDKSKQLAIIDIALA-
→˓SKERETPE---YINLDEKNKKVTFVRTPKFDE---------------------
...

papara_log.rpsD_AA_artificialMG - Settings and statistics for the PaPaRa run. This information is also
printed to StdOut upon running PaPaRa.

papara called as:
papara -t RAxML_bestTree.rpsD_AA -s rpsD_AA_aln.phymlAln.reduced -q rpsD_AA_
→˓translation_stops_removed
.fasta -n rpsD_AA_artificialMG -j 16 -a -f
references container instantiated as: papara::references<pvec_pgap, sequence_
→˓model::tag_aa>
edges: 125
scoring scheme: -3 -1 2 -3
papara_core version 2.4
start scoring, using 16 threads
thread 1: 0.786583 gncup/s
thread 3: 0.378382 gncup/s
thread 10: 0.200862 gncup/s
thread 6: 0.37806 gncup/s
thread 4: 0.371692 gncup/s
thread 9: 0.193493 gncup/s
thread 8: 0.378985 gncup/s
thread 12: 0.209433 gncup/s
thread 2: 0.477034 gncup/s
thread 13: 0.177332 gncup/s
thread 14: 0.282384 gncup/s
thread 0: 0.286568 gncup/s
thread 15: 0.283097 gncup/s
thread 11: 0.327415 gncup/s
thread 5: 0.594323 gncup/s
thread 7: 0.489285 gncup/s
scoring finished: 0.023149

(continues on next page)

4.5. 3: Align unknown reads to Reference Alignment 21

PHANS-C Documentation, Release 1.0

(continued from previous page)

generating best scoring alignments
SUCCESS 0.147885

4.5.2 3.2: Join reads to increase phylogenetic signal

Next generation sequencing technologies often use mate pairing or paired ends - geneating 2 reads per strand of
genomic DNA. In order to enhance the phylogenetic signal of the unknown reads for placement, and reduce errors
of duplicate counting, the script spaceJoin will combine the alignments of individual read pairs into one read for
placement. Since the exact length between the read pairs is unknown, an assumption is made that the alignment of the
individual reads is accurrate. Read pairs should be designated as _1 and _2 in fasta file used for building the BLAST
database, and the optional suffix _0 can represent read pairs that have already been joined.

$ phan-spaceJoin.py -p papara_alignment.rpsD_AA_artificialMG -r 64 -o rpsD_AA_cut40 -
→˓l 40

phan-spaceJoin.py command line options:

--version Show program’s version number and exit.

-h, --help Show this help message and exit.

-p FILE Specify the output file from PaPaRa that has the reference aln and metagenome
reads aln combined (“papara_alignment.*”).

-r INT Specify the number of sequences in the reference alignment (# of sequences in
reference tree).

-o FILE Specify the your desired output alignmemt file name.

-l INT Specify the minimum length of each read for placement; default set to 45
bases/residues.

phan-spaceJoin.py output files:

Log_spaceJoin_rpsD_AA_cut40_joinedReadsForPlacement.txt - A log file that out-
puts statistics about the joining of read pairs. Reads that are joined are relabeles as “_3”.

The following of the input alignment are the following:

Pre-Joind BOTH READS: 0
BOTH READS: 29
ONLY READ 1: 12
ONLY READ 2: 6

The following are the set of reads in the output file that are longer than 40
LONG Pre-Joined BOTH READS: 0
LONG BOTH READS: 29
LONG ONLY READ 1: 12
LONG ONLY READ 2: 4

Perecent of reads from total dataset that are longer than 40: 97.37%

Percent of long reads with pairs: 78.38%

(continues on next page)

22 Chapter 4. PHANS-C Tutorial

PHANS-C Documentation, Release 1.0

(continued from previous page)

Reads that are written to output file

Reads with mate pairs joined:
SMPLA_Vibrio_sp_MED222_NCBI_taxonomyId_314290_82469_3, SMPLB_Vibrio_sp_
→˓MED222_NCBI_taxonomyId_314290_82469_3, SMPLA_Deinococcus_geothermalis_DSM_
→˓11300_NCBI_taxonomyId_319795_37835_3, SMPLA_Candidatus_Pelagibacter_ubique_
→˓HTCC1062_NCBI_taxonomyId_335992_19173_3,
...

rpsD_AA_cut40_joinedReadsForPlacement.phymlAln - A new alignment file with the
joined reads.

109 228
Bifidobacterium_angulatum_DSM_20098_21
→˓ --MTNVQRSRRQVRLSRALGIAL----------
→˓TPKAQRIFEKRPYAPGEHG--RTRRRTESDYAVRLREKQRLRAQY-
→˓GLSEKQLRAVYEKGTKTSGQTGNAMLQDLEVRLDNLVLRAGFARTTAQARQFVVHRHILVDGNIVNRPSYRVKPGQTIQVKAKSQTMEPFQAAAEGVHRDVLPPVPGYLDVNLASLKATLTRKPEAEE-
→˓-V-PAQVNIQYVVEFYAR--
Pirellula_sp_1_61
→˓

→˓MKVTMARYTGPKARINRRLGTMLYET-----AGAARA---MDRRPQPPGMHT----
→˓RGRRPSNYGAALMEKQKIKHYY-
→˓GLGERQLRRYFENVGRKSGNTGELLLLMCERRLDNVVRRVGFTKTRPQARQGITHGHFRVNGVKVTKPGYMLRAGDLIEVRGRENLKNLYRGVIANSPPDGLD-
→˓---WVSFDSETLRATVLSLPGAVD--I-SLPVDANSVVEFLSR--
...
SMPLA_Escherichia_coli_W3110_NCBI_taxonomyId_316407_83762_3
→˓ --
→˓-------------------------------
→˓FRNYYKEAARLKGNTGENLLALLEGRLDNVVYRMGFGATRAEARQLVSHKAIMVNGRVVNIASYQVSPNDVVSIREKAKKQSRVKAALELAEQREKPT-
→˓--
SMPLB_Candidatus_Pelagibacter_ubique_HTCC1062_NCBI_taxonomyId_335992_8052_3
→˓ ----MTKRISAKHKIDRRLKINL--------WGRPKS--PFNKRDYGPGQHG--
→˓QGRKGKPSDYGIQLQAKQKLKGYYGNINERQFRNIYKKAT-----------------------------------
→˓---
→˓------------------------
...

4.6 4: Phylogenetic placement of unknown reads

4.6.1 4.1: Use the Evolutionary Placement Algorithm (EPA) to assign unknown
reads within tree

The formatted unknown metagenomic reads are combined with the reference phylogeny using RAxML EPA.

$ raxml -f v -m PROTCATLG -s rpsD_AA_cut40_joinedReadsForPlacement.phymlAln -r RAxML_
→˓bestTree.rpsD_AA -n rpsD_AA_placements -T 8

RAxML-EPA command line options used:

-f v Use EPA to place environmental sequence reads onto a reference tree.

-m PROTGAMMALG Use the PROTGAMMALG model.

-s FILE Alignment file with joined environmental reads aligned to reference alignment.

4.6. 4: Phylogenetic placement of unknown reads 23

https://academic.oup.com/sysbio/article/60/3/291/1667010/

PHANS-C Documentation, Release 1.0

-r FILE Specify the original reference tree.

-n STR Label for output files.

-T INT Specify number of threads (do not specify more threads than available on your
machine).

RAxML-EPA output files:

RAxML-EPA produces numerous files - details of which can be found in the RAxML manual.

RAxML_classification.rpsD_AA_placements - Read placement/classification results file.

SMPLB_Bacteroides_plebeius_DSM_17135_NCBI_taxonomyId_484018_1483_1 I9 1 0.
→˓00000100000050002909
SMPLB_Shewanella_baltica_OS155_NCBI_taxonomyId_325240_2956_1 I96 1 0.
→˓00000100000050002909
SMPLA_Bacteroides_plebeius_DSM_17135_NCBI_taxonomyId_484018_1483_1 I9 1 0.
→˓00000100000050002909
SMPLA_Shewanella_baltica_OS155_NCBI_taxonomyId_325240_2956_1 I96 1 0.
→˓00000100000050002909
...

RAxML_classificationLikelihoodWeights.rpsD_AA_placements - Read placement/classification
results using likelihood weights.

RAxML_entropy.rpsD_AA_placements - Entropy results using likelihood weights.

RAxML_originalLabelledTree.rpsD_AA_placements - Original reference tree with labeled node IDs.

RAxML_labelledTree.rpsD_AA_placements - Reference tree with branch labels and read placements.

RAxML_portableTree.rpsD_AA_placements.jplace - Labelled reference tree with branch labels in
portable pplacer/EPA format (without query sequences). This file can be used along with the package genesis for
viewing/manipulating placement data. genesis is not included within the AWS AMI or the PHANS-C Pipeline.

4.6.2 4.2: Visualize distribution of likelihood scores (or branch-lengths)

All of the reads may not be placed with high quality scores. In order to evaluate read placement quality, you can view
an interactive visualization of the distribution of either likelihood scores for the final placement of a read or the branch
lengths. The script “phan-distributions.py” will generate a stand-alone interactive html file where you can inspect the
distribution of reads (see figure below for example). Below the chart of the distribution is a table of the reads sorted
in order of the score bins. By clicking on a bar in the chart, it will highlight the corresponding row in the table. You
can then use keyboard shortcuts to copy the row of values (the reads with scores in that bin) and paste them into a text
editor.

The following will generate a distribution of the likelihood scores in a stand-alone .html file:

$ phan-distributions.py -i RAxML_classificationLikelihoodWeights.rpsD_AA_placements -
→˓l -o rpsD_likelihoods

24 Chapter 4. PHANS-C Tutorial

https://sco.h-its.org/exelixis/resource/download/NewManual.pdf
http://genesis-lib.org/

PHANS-C Documentation, Release 1.0

The following will generate a distribution of branch lengths in a stand-alone .html file:

$ phan-distributions.py -i RAxML_classification.rpsD_AA_placements -b -o rpsD_
→˓branchLengths

4.6. 4: Phylogenetic placement of unknown reads 25

PHANS-C Documentation, Release 1.0

While these figures are extremely simple for this tutorial, they become more useful with complex data. For example,
the following are the distributions for the more complicated dataset analyzed and described in the manuscript.

26 Chapter 4. PHANS-C Tutorial

PHANS-C Documentation, Release 1.0

4.6. 4: Phylogenetic placement of unknown reads 27

PHANS-C Documentation, Release 1.0

4.6.3 4.3: View the placements and tree with FigTree

The script “phan-figTreeFiles.py” will reformat the placement tree into a newick-like format that can be viewed with
the phylogenetic tree viewer FigTree. A basic annotation file will also be generated that can be loaded into FigTree
for additional tree visualizations (used in the color mapping of reads).

$ phan-figTreeFiles.py -i RAxML_labelledTree.rpsD_AA_placements -o rpsD

phan-figTreeFiles.py options:

-i Specify the tree you wish to reformat. In the example, using the labelled tree
output from RAxML-EPA, but the original tree output can also be used as input.

-o specify the label you would like to use in your output file names.

You can now open the output file in the FigTree GUI tree viewer. Open the file PlacementTree_rpsD.nw with
FigTree. When the “Input” window pops up, change the field to “node”.

28 Chapter 4. PHANS-C Tutorial

http://tree.bio.ed.ac.uk/software/figtree/

PHANS-C Documentation, Release 1.0

Now you can see the Tree in FigTree. Notice that the names of the terminal nodes now have the node number appended
to the end of the label as [I#]. You can now add in internal node labels as well by checking the box for “Node Labels”
in the left pane. If you select the arrow, the field will drop down with more details. Click on the drop-down selector
next to “Display” and select the field “node”. You should now be able to see all the internal nodes labeled throughout
the tree.

4.6. 4: Phylogenetic placement of unknown reads 29

PHANS-C Documentation, Release 1.0

You can add further customization to the tree by using the default annotations file that is produced by
phan-figTreeFiles.py called AnnotationsFile_PlacementTree_rpsD.tab. You can manually add
additional labels to this file in order to add further customizations. In order to load this annotations file, in FigTree go
to File > Import_Annotations and load the file AnnotationsFile_PlacementTree_rpsD.tab.

30 Chapter 4. PHANS-C Tutorial

PHANS-C Documentation, Release 1.0

In order to visualize the annotations, select the arrow next to “Tip Labels” in the left pane. From the drop down
selector next to “Colour by:” select “Category”. In order to adjust the colors further, next to “Setup:” click on the box
“Colour”.

4.6. 4: Phylogenetic placement of unknown reads 31

PHANS-C Documentation, Release 1.0

This is a very short overview on working with annotations in FigTree. Please see the FigTree documentation and
discussion threads for further information.

4.6.4 4.4: Create annotation key for read placements

Generate tree file dictionary:

The RAxML-EPA output file RAxML_classification.rpsD_AA_placements classifies the placement reads
by labeled node ID. In order to make the classifications more readily interpretable, a dictionary file is created based
upon the tree file RAxML_originalLabelledTree.rpsD_AA_placements which acts as a key to convert
labeled node number into the reference sequence name for all extant nodes.

$ phan-taxaDictionary.py -O RAxML_originalLabelledTree.rpsD_AA_placements -N rpsD_
→˓taxa_dictionary.txt

If the output is improperly named (see note about -N below) you may have to rename the output file.

32 Chapter 4. PHANS-C Tutorial

PHANS-C Documentation, Release 1.0

$ mv rpsD_taxa_dictionary.txt_Taxa_Dictionary.txt rpsD_taxa_dictionary.txt

phan-taxaDictionary.py command line options:

--version Show program’s version number and exit.

-h, --help Show this help message and exit.

-O FILE Specify the original tree file output from RAxML-EPA that is the labeled tree by
node of Ref taxa only.

-N STR Specify the output file name for the taxa dictionary. Note that the -N flag may not
be honored, if so you must hand rename the file.

phan-taxaDictionary.py output file:

rpsD_taxa_dictionary.txt - The dictionary output file.

...
I6 Flavobacterium_psychrophilum_JIP0286_17
I9 Bacteroides_plebeius_DSM_17135_36
I10 Bacteroides_vulgatus_ATCC_8482_37
I8 I8
I11 Bacteroides_eggerthii_DSM_20697_32
I7 I7
I5 I5
I12 Chlorobium_limicola_DSM_245_31
...

Update tree file dictionary:

If we look at this tree, we can see that some of the internal nodes can also be relabeled from node numbers to more
meaningful text labels. Add in FigTree info Some tree viewing software may require you to add the ‘.tree’ suffix to the
end of the file name in order to open it. Below is a zoomed in section of the tree showing the portion of the reference
tree containing *Bacteroides.

The internal nodes I8 and I7 are internal nodes containing Bacteroides. It is possible to manually update the dictionary
file to reflect this, so that any placements made to these internal nodes will be labeled as Bacteroides.

Manually update rpsD_taxa_dictionary.txt:

...
I6 Flavobacterium_psychrophilum_JIP0286_17
I9 Bacteroides_plebeius_DSM_17135_36
I10 Bacteroides_vulgatus_ATCC_8482_37
I8 Bacteroides
I11 Bacteroides_eggerthii_DSM_20697_32
I7 Bacteroides
I5 I5

(continues on next page)

4.6. 4: Phylogenetic placement of unknown reads 33

PHANS-C Documentation, Release 1.0

(continued from previous page)

I12 Chlorobium_limicola_DSM_245_31
...

4.6.5 4.5: Reannotate read placements with meaningful labels

Use the dictionary file, rpsD_taxa_dictionary.txt to relabel the nodes from the RAxML-EPA classification
file.

$ phan-treeLabels.py -D rpsD_taxa_dictionary.txt -C RAxML_classification.rpsD_AA_
→˓placements

phan-treeLabels.py command line options:

--version Show program’s version number and exit.

-h, --help Show this help message and exit.

-D FILE Specify the dictionary file that contains the node location ‘[I#]’ with the associ-
ated reference taxa name.

-C FILE Specify the output file from RAxML-EPA that is a list of the Query sequences
assigned to their locations on the reference tree

phan-treeLabels.py output file:

RAxML_classification.rpsD_AA_placements_placement_list.csv - The reads placed by rela-
beled tree nodes in .csv format.

Tree_node, Read_ID
Bacteroides_plebeius_DSM_17135_36,SMPLB_Bacteroides_plebeius_DSM_17135_NCBI_
→˓taxonomyId_484018_1483_1
Shewanella_baltica_OS155_43,SMPLB_Shewanella_baltica_OS155_NCBI_taxonomyId_325240_
→˓2956_1
Bacteroides_plebeius_DSM_17135_36,SMPLA_Bacteroides_plebeius_DSM_17135_NCBI_
→˓taxonomyId_484018_1483_1
...

4.6.6 4.6: Tabulate reads & sort by metagenome

Finally, you can group and count all reads placed to unique tree labeled nodes. If nodes were labeled with the same
text string (e.g. internal nodes I7 & I8 relabeled as Bacteroides, then the count will be a combination of both of these
labels).

If the original BLAST database contained sequences from multiple metagenomic samples, then
this script can optionally parse out the placements by metagenome. In order to utilize this fea-
ture, the reads must all be labeled with unique metagenome sample ID pre-fixes (e.g. read SM-
PLA_Bacteroides_plebeius_DSM_17135_NCBI_taxonomyId_484018_1483_1 is from metagenome SMPLA).
A key file of the metagenomes must also be included which consists of a text file with each unique metagenomic
sample ID listed per line. For the tutorial, one has been provided: Sample_list_IDs.txt

SMPLA
SMPLB

Since the tutorial consists of a database with two metagenomes, we will separate them out.

34 Chapter 4. PHANS-C Tutorial

PHANS-C Documentation, Release 1.0

$ phan-sortPlacements.py -C RAxML_classification.rpsD_AA_placements_placement_list.
→˓csv -L Sample_list_IDs.txt

phan-sortPlacements.py command line options:

--version Show program’s version number and exit.

-h, --help Show this help message and exit.

-L FILE Specify the metagenomic sample unique identifiers - one ID per line without
special characters.

-C FILE Specify the reads listed according to their node which has already been relabeled
by phan-taxaDict.py.

phan-sortPlacements.py output files:

Two files are generated for every metagenomic sample. Here, we have files generate for SMPLA and SMPLB
metagenomes.

RAxML_classification.rpsD_AA_placements_placement_list_SMPLA_counts.csv - A .csv
file of the counts of reads by unique node label.

Tree_node, Total Reads
Escherichia_coli_W3110_41,1
Bacillus_selenitireducens_MLS10_29,2
Deinococcus_geothermalis_DSM_11300_33,3
Cand_Pelagibacter_ubique_HTCC1062_1,9
Bacteroides_plebeius_DSM_17135_36,1
Vibrio_sp_MED222_45,3
Shewanella_baltica_OS155_43,1
Marinomonas_sp_MED121_49,2
...

RAxML_classification.rpsD_AA_placements_placement_list_SMPLA_readsPlaced.csv -
A .csv file of all the reads placed to each unique node label. The first entry on each line is the unique node label and
all the following elements are the individual reads which placed to that node.

Tree_node, Reads_placed
Escherichia_coli_W3110_41,SMPLA_Escherichia_coli_W3110_NCBI_taxonomyId_316407_83762_3
Bacillus_selenitireducens_MLS10_29,SMPLA_Bacillus_selenitireducens_MLS10_NCBI_
→˓taxonomyId_439292_28809_3,SMPLA_Bacillus_selenitireducens_MLS10_NCBI_taxonomyId_
→˓439292_52168_3
Deinococcus_geothermalis_DSM_11300_33,SMPLA_Deinococcus_geothermalis_DSM_11300_NCBI_
→˓taxonomyId_319795_37835_3,SMPLA_Deinococcus_geothermalis_DSM_11300_NCBI_taxonomyId_
→˓319795_2 6433_3,SMPLA_Deinococcus_geothermalis_DSM_11300_NCBI_taxonomyId_319795_
→˓93937_3
...

The related files, RAxML_classification.rpsD_AA_placements_placement_list_SMPLB_counts.
csv and RAxML_classification.rpsD_AA_placements_placement_list_SMPLB_readsPlaced.
csv are also generated for reads from metagenomic sample SMPLB.

4.7 5: Final Summary

The final result of running the PHANS-C Pipeline is a list of short sequencing reads that have been characterized
according to full length references. If you ran the run_tutorial.sh script, then you will find a directory called /Results

4.7. 5: Final Summary 35

PHANS-C Documentation, Release 1.0

which has the highlights produced from this script. In order to generate these results manually (if you followed this
tutorial manually, step-by-step), run the following to generate this same directory:

$ mkdir ../Results
$ mkdir ../Results/Quantitation
$ mkdir ../Results/EPA-Out
$ mkdir ../Results/Vis-Distributions
$ cp RAxML_labelledTree.rpsD_AA_placements RAxML_originalLabelledTree.rpsD_AA_
→˓placements RAxML_classification.rpsD_AA_placements RAxML_
→˓classificationLikelihoodWeights.rpsD_AA_placements ../Results/EPA-Out/
$ cp rpsD_branchLengths_distribution_branch-lengths.html rpsD_likelihoods_
→˓distribution_likelihoodWeights.html ../Results/Vis-Distributions/
$ cp AnnotationsFile_PlacementTree_rpsD_figTree.tab PlacementTree_rpsD_figTree.nw ../
→˓Results/
$ cp RAxML_classification.rpsD_AA_placements_placement_list.csv RAxML_classification.
→˓rpsD_AA_placements_placement_list_SMPLA_counts.csv RAxML_classification.rpsD_AA_
→˓placements_placement_list_SMPLA_readsPlaced.csv RAxML_classification.rpsD_AA_
→˓placements_placement_list_SMPLB_counts.csv RAxML_classification.rpsD_AA_placements_
→˓placement_list_SMPLB_readsPlaced.csv ../Results/Quantitation/

The overall results are broken up into 3 subdirectories. /Results/EPA-Out are copies of the main output files from the
EPA placement algorithm - to view the placement files in FigTree, you can use $ phan-figTreeFiles.py to generate a
newick-like file that can be loaded by FigTree (See Section 4.3 for details). /Results/Vis-Distributions are copies of the
interactive visualizations of the read placement metrics. And /Results/Quantitation lists copies of .csv files which list
counts of reads placed to nodes on the reference tree.

36 Chapter 4. PHANS-C Tutorial

Tutorial.html#view-the-placements-and-tree-with-figtree

CHAPTER 5

License

The PHANS-C pipeline software is registered under a GPL license, copyright University of Washington 2019.

This material is based upon work supported by the National Science Foundation under Grant Numbers OCE-1138368
and OCE-1356779 as well as a NASA Graduate Research Fellowship and NASA Postdoctoral Research Fellowship to
JKS. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation or the National Aeronautics and Space
Administration.

37

	Overview of PHANS-C Pipeline
	Citations for using PHANS-C
	How to run PHANS-C
	Amazon AWS AMI
	Docker Image
	Local Installation

	PHANS-C Tutorial
	Get the tutorial folder
	The Tutorial
	1: Construct the Phylogenetic Reference Tree
	2: Parse and Format reads from Metagenome
	3: Align unknown reads to Reference Alignment
	4: Phylogenetic placement of unknown reads
	5: Final Summary

	License

